How to calculate vibrating screen parameters

A vibrating screen is a mechanical equipment used for separating materials into smaller-sized fractions or removing impurities. It consists of a screen mesh, which is a surface with openings of specific sizes, through which materials pass when subjected to vibration. Vibrating screens find applications in various industries, including mining, construction, agriculture, and recycling.

Components of a Vibrating Screen

Screen Mesh:

The screen mesh is a critical component with openings that determine the size of particles passing through. Different types of screen meshes, such as woven wire mesh or perforated plates, may be used based on the application.

Vibrator Motors:

Vibrating screens are equipped with one or more vibrator motors that generate the vibratory motion. These motors are mounted on the sides or underneath the screen deck.

Screen Deck:

The screen deck is the surface on which the material is placed for screening. It can have one or multiple layers, each with a different mesh size.

Support Structure:

The support structure provides stability and ensures proper alignment of the vibrating screen components. It may include a frame, springs, and other structural elements.

Drive Unit:

The drive unit is responsible for generating the necessary vibration to move the screen. It typically includes an electric motor, an eccentric shaft, and a set of gears.

Working Principle

The vibrator motors generate vibratory motion, causing the screen deck to vibrate. This vibration moves the material along the screen surface and separates particles based on size or other characteristics. The inclination and amplitude of the vibrating screen can be adjusted to optimize the screening process for specific applications.

High Frequency Dehydration Vibrating Screen

Screening Area Calculation:

  • The screening area is the total available surface area of a screening deck.
  • Calculate the screening area by multiplying the length of the screen (L) by the width of the screen (W).

Deck Surface Opening:

The size of the openings in the screening surface affects the efficiency of the screening process.

Specify the desired opening size or use the average particle size of the material being screened.

Vibration Amplitude:

Vibration amplitude is the measure of the amount of vibrational movement the screen deck undergoes during operation.

It is typically expressed in millimeters (mm) or inches (in).

The amplitude can be determined based on the type of vibrating screen and the material being processed.

Vibration Frequency:

Vibration frequency is the number of times the screen deck completes one cycle of vibration per second.

It is expressed in Hertz (Hz).

The optimal frequency depends on the type of material and the characteristics of the screening process.

Screen Inclination:

The inclination angle of the screen affects the material’s movement on the screen surface.

The optimum inclination angle depends on the specific application and the characteristics of the material.

Linear vibrating screen

Material Characteristics:

Consider the properties of the material being screened, including particle size distribution, moisture content, and bulk density.

Motor Power Calculation:

The power required to operate the vibrating screen motor can be calculated using the following formula:

P=Q*A*K/N*60

Where:

P is the power in kilowatts.

Q is the processing capacity of the screen in cubic meters per hour.

A is the screening area in square meters.

K is a constant factor (typically ranging from 0.05 to 0.10).

N is the screen speed in revolutions per minute.

Dynamic Load Calculation:

Calculate the dynamic load on each vibrating screen bearing using the following formula:

Fd=Q×R/1000×60

​Where:

Fd is the dynamic load on the bearing in kilonewtons.

Q is the processing capacity of the screen in cubic meters per hour.

R is the eccentricity of the screen in millimeters.

These calculations provide a foundation for the design and operation of vibrating screens. However, it’s important to consult with a professional engineer or a manufacturer with expertise in vibrating screen design to ensure accurate and efficient sizing and operation based on specific application requirements.